Министерство сельского хозяйства Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Пермский государственный аграрно-технологический университет имени академика Д.Н. Прянишникова»

С.Л. Елисеев, В.П. Мурыгин, Т.С. Калабина

СОВЕРШЕНСТВОВАНИЕ ТЕХНОЛОГИИ ВОЗДЕЛЫВАНИЯ ЗЕРНОВЫХ КУЛЬТУР В УСЛОВИЯХ ОРГАНИЧЕСКОЙ СИСТЕМЫ ЗЕМЛЕДЕЛИЯ ООО «АГРОФИРМА «ОСТРОЖКА» ОХАНСКОГО РАЙОНА ПЕРМСКОГО КРАЯ

Рекомендации

Пермь ИПЦ «Прокростъ» 2020 УДК 633 ББК 42. Е 515

Рецензенты:

Ю.Н. Зубарев, доктор сельскохозяйственных наук, профессор, ФГБОУ ВО Пермский ГАТУ;

В.Д. Галкин, доктор технических наук, профессор, ФГБОУ ВО Пермский ГАТУ.

Е 515 Елисеев, С.Л.

Совершенствование технологии возделывания зерновых культур в условиях органической системы земледелия ООО «Агрофирма «Острожка» Оханского района Пермского края: рекомендации / С.Л. Елисеев, В.П. Мурыгин, Т.С. Калабина; Министерство сельского хозяйства Российской Федерации, федеральное государственное бюджетное образовательное учреждение высшего образования «Пермский государственный аграрно-технологический университет имени академика Д.Н. Прянишникова». – Пермь: ИПЦ «Прокрость», 2020 – 50 с; 21 см – Библиогр.: с.46-50. – 50 экз. – ISBN 978-5-94279-508-5 – Текст: непосредственный.

В рекомендациях освещено состояние производства зерна яровой пшеницы и других зерновых культур по органической системе земледелия в ООО «Агрофирма «Острожка» Оханского района Пермского края. Показаны основные недостатки и предложены направления совершенствования технологий производства зерновых культур.

Рекомендации предназначены для специалистов сельскохозяйственных предприятий, преподавателей и обучающихся аграрных вузов и колледжей.

УДК 633 ББК 42

Печатается по решению научно-технического совета Пермского государственного аграрно-технологического университета имени академика Д.Н. Прянишникова.

ISBN 978-5-94279-508-5

- © ИПЦ «Прокрость», 2020
- © Елисеев С.Л., 2020
- © Мурыгин В.П., 2020
- © Калабина Т.С., 2020

Содержание

Введение	4
1 Органическое земледелие, его преимущества и недо-	
статки	6
2 Состояние органического производства зерна в ООО	
«Агрофирма «Острожка» Оханского района Пермского	
края	16
3 Основные направления совершенствования техноло-	
гии органического производства зерна в ООО «Агро-	
фирма «Острожка» Оханского района Пермского края	32
3.1 Основные недостатки органической системы	
земледелия при производстве зерна	32
3.2 Рекомендации по совершенствованию технологии	
возделывания яровой пшеницы и других зерновых	
культур	34
Заключение	42
Список литературы	46

ВВЕДЕНИЕ

Стратегия развития современного сельскохозяйственного производства, осложнение политической и экономической ситуации в мире предполагает решение проблемы повышения конкурентоспособности производимой в стране сельскохозяйственной продукции, достижения продовольственной независимости нашего государства, проведение замещения импортных продуктов питания.

Зерновое производство является основой агропромышленного комплекса России. Под посевами зерновых культур занято более 50% пашни, на долю зерна приходится треть стоимости валовой продукции растениеводства и стоимости кормов в животноводстве [44]. Первостепенное значение зерна определяется вкладом в решение продовольственной независимости населения страны, обеспечение его хлебом и другими продуктами переработки зерна, что составляет 40% общей калорийности питания, 50% потребности в белках и 60% в углеводах [5]. В пищевой и перерабатывающей промышленности оно составляет значительную часть сырья. У сельскохозяйственных животных и птицы на откорме кормовое зерно составляет более 85% рациона. Важное экономическое значение для страны имеет поступление средств от реализации зерна и продуктов его переработки.

При использовании зерна, особенно при достаточных объемах его производства на первый план выходят его качественные показатели. Анализ показывает, что значительная часть получаемой продукции загрязнена опасными веществами: тяжелыми металлами, пестицидами, микотоксинами. Этому способствуют традиционные технологии возделывания зерновых культур, основанные на использовании больших доз синтетических

агрохимикатов и пестицидов в неблагоприятных агроэкологических условиях. Поэтому переход на органическое земледелие это насущная потребность современного общества. Бесконтрольное использование средств химизации — это реальная угроза природе, употребление некачественных продуктов питания — угроза здоровью человека.

Однако резкий отказ от удобрений и пестицидов, особенно в условиях низкого плодородия почв и культуры земледелия сопровождается снижением возврата элементов минерального питания в почву, приводит к увеличению засоренности посевов, поражения их вредителями и болезнями и как следствие существенному снижению урожайности продукции.

Это требует проведения мониторинга почвенного плодородия, фитосанитарного состояния посевов и качества продукции, на базе сельскохозяйственного предприятия применяющего органическую систему земледелия. Проведение исследований позволит оценить агроэкологическую эффективность используемой органической системы земледелия в регионе и усовершенствовать применяемые при этом технологии возделывания зерновых культур.

Данная работа была проведена в ООО «Агрофирма «Острожка» Оханского района Пермского края.

1 ОРГАНИЧЕСКОЕ ЗЕМЛЕДЕЛИЕ, ЕГО ПРЕИМУЩЕСТВА И НЕДОСТАТКИ

Организовать систему земледелия подобно природной экосистеме заставляет человека негативный опыт последних 200 лет хозяйствования. Интенсивная отвальная вспашка привела к развитию ветровой и водной эрозии почвы, снижению активности почвенной биоты, снижению содержания гумуса, ухудшению агрофизических свойств и водно-воздушного режима почв и, как следствие, к существенному снижению урожайности полевых культур в неблагоприятные годы [8, 20, 36].

Решая эти проблемы, органическое земледелие основывается на принципе сохранения плодородия почвы посредством применения мелкой, или поверхностной консервирующей обработки почвы, мульчирования ее поверхности пожнивными (поукосными) остатками, сидерации и применения органических удобрений и эффективных микробиологических препаратов. Эти агроприемы активизируют в почве микробиологические процессы и ценотические связи, восстанавливают и улучшают ее агрохимические и агрофизические свойства [26, 36, 41, 43, 51 и др.]. Вторым принципом органического земледелия является получение экологически чистой продукции, свободной от остатков пестицидов, тяжелых металлов и других, вредных для организма человека и животного веществ. Поэтому органическое земледелие основано на использовании только органических удобрений. Минеральные агрохимикаты, синтетические препараты и пестициды не применяются. Из первых двух принципов органического земледелия вытекает третий – сохранение благоприятного состояния окружающей среды за счет снижения поступления вредных веществ в атмосферу, воду и почву.

В соответствии с Федеральным законом № 280 — ФЗ от 03.08.2018 [2] под органическим сельским хозяйством подразумевается совокупность видов экономической деятельности, которые определены Федеральным законом № 264 — ФЗ от 29. 12. 2006 «О развитии сельского хозяйства», при осуществлении которых применяются способы, методы и технологии. направленные на обеспечение благоприятного состояния окружающей среды, укрепление здоровья человека, сохранение и восстановление плодородия почв [1].

При производстве органической продукции растительного происхождения по законодательству необходимо соблюдать следующие требования:

- 1. Обособление производства органической продукции от производства обычной продукции, запрет на их смешивание при хранении и транспортировке.
- 2. Запрет на применение агрохимикатов, пестицидов и стимуляторов роста. В соответствии с ГОСТ 33980 2016 [18] определен перечень и условия применения агрохимикатов и средств защиты растений.
- 3. Запрет на использование методов клонирования и генной инженерии, а также продукции полученной с использованием этих методов.
- 4. Запрет на использование гидропонного метода выращивания растений.
- 5. Запрет на использование ионизирующего излучения.
- 6. Разрешается применение для борьбы с болезнями, вредителями и сорняками средств биологического происхождения, агротехнических методов и методов термической обработки.
- 7. Подбор наиболее адаптивных и устойчивых к болезням сортов.

- 8. Разрешается использование приемов обработки почвы, сохраняющих ее естественное сложение, плодородие и биоразнообразие.
- 9. Рекомендуется применение севооборотов с бобовыми, сидеральными и промежуточными культурами.
- 10. Средства производства растительного (семена, посадочный материал) и животного (органические удобрения) происхождения должны быть получены в условиях органического производства.

Органическая продукция должна быть сертифицирована соответствующими отечественными или международными аккредитованными органами.

По данным Научно-исследовательского института питания Российской академии медицинских наук, заболевания жителей России, связанные с нарушением питания составляют 30 – 50% всех заболеваний [31]. Это во многом связанно с тем, что продукция, произведенная в условиях традиционного интенсивного земледелия, загрязнена опасными веществами. Анализ показывает, что доля такой продукции составляет 40% [54]. Органическое земледелие позволяет существенно повысить качество продукции и питания человека. Производство, размещенное на почвах чистых от тяжелых металлов и пестицидов, позволяет получать исключительно безопасную продукцию. Приемы агротехники, применяемые в органическом земледелии, препятствуют их накоплению в продукции. Это относится к мелкой обработке почвы [27, 54], отказу от применения удобрений [54, 56]. Особенно много вредных веществ, при интенсивном ведении производства, накапливается в овощных и плодовых культурах. По отдельным позициям накопление вредных веществ в них превышает ПДК в 1,6 - 3,1 pasa [9].

Традиционное сельское хозяйство, занимая огромные площади, оказывает существенное влияние на окружающую

среду. Во-первых, теряется плодородие почвы. Постоянная отвальная обработка почвы приводит к минерализации гумуса, потери которого не компенсируются поступлением органического вещества. По данным ученых Пермского НИИ сельского хозяйства возделывание сельскохозяйственных культур по традиционным технологиям в течении 40 лет привело к относительному снижению гумуса в дерново-подзолистой почве на 13%. Компенсировать такие потери можно только ценой внесения высоких доз органических и минеральных удобрений [14]. Более 35 млн. га пашни в Российской Федерации подвержено водной и ветровой эрозии, 50 млн. га опустыниванию [35].

Консервирующая система обработки почвы в сочетании с внесением органических удобрений, включением в севооборот сидеральных культур, применяемая в органическом земледелии, способна предотвратить потери плодородия почвы, влаги и эрозионные процессы [38]. По данным Н.А Пеговой [41] в условиях Среднего Предуралья за одну ротацию севооборота консервирующая система обработки почвы по сравнению с отвальной вспашкой повысила содержание подвижных форм фосфора и калия соответственно на 7,1 и 37%, структурность почвы — на 13,2%, массовую долю органического вещества в пахотном слое на 37%. Более 35 млн. га пашни в Российской Федерации подвержено водной и ветровой эрозии, 50 млн. га опустыниванию [35].

Консервирующая система обработки почвы в сочетании с внесением органических удобрений, включением в севооборот сидеральных культур, применяемая в органическом земледелии, способна предотвратить потери плодородия почвы, влаги и эрозионные процессы [38]. По данным Н.А Пеговой [41] в условиях Среднего Предуралья за одну ротацию севооборота консервирующая система обработки почвы по сравнению с отвальной вспашкой повысила содержание подвижных

форм фосфора и калия соответственно на 7,1 и 37%, структурность почвы – на 13,2%, массовую долю органического вещества в пахотном слое на 37%. По данным Швейцарских ученых в органических системах земледелия увеличивается биоразнообразие микроорганизмов, длина микоризы грибов увеличивается на 40%, биомасса дождевых червей в 1,3-3,2 раза, что повышает эффективность использования органического вещества и минеральных ресурсов почвы [59]. По данным Всероссийского НИИ биологической защиты растений при органической системе земледелия снижается доля патогенных грибов рода Fusarium и повышается активность сапрофитных грибов рода Penicillium и Aspergillus. По оценкам специалистов, не менее 50% пашни Российской Федерации загрязнено ядохимикатами и прежде всего хлорорганическими соединениями [42]. Площадь загрязнения тяжелыми металлами составляет 3,6 млн. га, радионуклидами – 17 млн. га [3]. До 70% воды на планете загрязнено опасными веществами [80]. В природные воды поступают фосфаты в количествах около 17 млн. т [42]. В мировой океан ежегодно сбрасывается до 50 тыс. т пестицидов, а уровень содержания нитратов в реках Европы в 45 раз превышает естественный фон [30].

Органическое земледелие не только не наносит большого вреда природе, даже улучшает отдельные показатели почвы. Применение биологического препарата Гордебак и микробного препарата АгроМик увеличивает долевое участие олигонитрофильных микроорганизмов до 51 и 60%, при одновременном снижении доли аммонифицирующих и усваивающих минеральный азот микроорганизмов. Препарат микробный Бактопин повышает содержание фосфатмобилизующих микроорганизмов до 40%. Выявленная в ризосфере рапса при применении микробных препаратов высокая численность олигонитрофильных и фосфатмобилизующих микроорганизмов

способствует поступлению в растения биологического азота и фосфора [46].

Сравнительные оценки показывают, что органическое земледелие менее затратно, чем традиционное, так как отказывается от таких дорогостоящих агроприемов, как отвальная обработка почвы, применение минеральных удобрений и пестицидов. Двадцатилетний опыт швейцарских аграрников показывает, что затраты на удобрения снижаются на 50%, пестицидов — на 97% [42]. По данным австрийских ученых общие затраты в интенсивном органическом земледелии ниже на 9% [58]. По данным отечественных ученых затраты при отвальной обработке почвы выше, чем при безотвальной на 40%, а при мелкой - на 75% [25].

Тем не менее, Россия, в числе стран, развивающих органическое земледелие, занимает одно из последних мест - менее 0,1% [45]. С чем это связано? Первое с чем приходится сталкиваться при переходе на органическое земледелие – снижение урожайности сельскохозяйственных культур. Это, прежде всего, связано с отказом от главного средства интенсификации - минеральных удобрений. Значительная доля площади пашни имеет низкое содержание доступных макроэлементов, высокую кислотность. По данным агрохимического обследования в Российской Федерации 35% пашни имеют повышенную кислотность, 22% - обеднены подвижным фосфором, 10% - обменным калием, 30% - имеют низкое содержание гумуса и азота. Особенно остро эти вопросы встают на почвах подзолистого и дерново-подзолистого типа, содержание гумуса в которых в среднем составляет 1,75 - 2,13% [48]. По данным Л.А. Михайловой и Ю.А. Акманаевой [33] урожайность ячменя на почве слабо обеспеченной фосфором была ниже на 16%, чем на почве высоко обеспеченной этим элементом питания. Отказ только от азотных удобрений снижает урожайность культуры на 20-30%. Особенно сильное снижение урожайности отмечается на интенсивных культурах. При отказе от азотных удобрений в дозе 30 кг/га д.в. урожайность картофеля снижается на 37%, а по сравнению с дозой N60- на 72%, N90-108% [12]. По обобщенным данным урожайность зерновых культур снижается на 20-30%, картофеля и сахарной свеклы— на 35-55%, плодов и овощей— на 20-40% [16, 23]. При отказе от удобрений ухудшается качество сельхозпродукции. В частности в зерне снижается содержание клейковины и белка, повышается загрязненность продукции семенами трудноотделимых сорняков (овсюга, татарской гречихи и др.).

Минеральные удобрения играют важную роль при обеспечении бездефицитного баланса гумуса и азота в дерновоподзолистой почве. По данным ученых Пермского НИИСХ, наряду с известкованием, внесением органических удобрений и насыщением севооборота бобовыми культурами, необходимо вносить в среднем на 1 га севооборотной площади (NPK)60 [14]. Для пополнения в почве запасов фосфора и калия решающее значение имеет внесение фосфорных и калийных удобрений [34, 48].

По данным австрийских ученых на органической системе земледелия, по сравнению с традиционной, снизилась на 19% [58]. Двадцатилетние исследования в Швейцарии показывают снижение урожайности от органического земледелия на 20% [42].

Законы органического земледелия запрещают, за редким исключением, применение химических пестицидов. Исключение из технологий возделывания культур применения химических препаратов (гербицидов, фунгицидов, инсектицидов, протравителей семян, регуляторов роста растений, индукторов устойчивости и др.) влечет за собой массовое развитие вредных организмов. Засоренность посевов и биоразнообра-

зие сорняков увеличивается в 2-3 раза, численность членистоногих в 2 раза. Увеличивается биоразнообразие почвенных микроорганизмов, в том числе патогенных плесневых грибов и болезнетворных бактерий [59]. Если не сдерживать их развитие, то значительное количество продукции может заражаться микотоксинами [11, 49]. Существенную фитосанитарную опасность представляют собой инвазивные эпидемии растений, которые невозможно остановить без применения эффективных средств защиты растений [21]. Увеличению засоренности посевов способствует мелкая и безотвальная обработки почвы. По данным исследований безотвальная обработка почвы повышает засоренность по сравнению с отвальной вспашкой на 10-50% [17, 22, 28], мелкая в 1,3-2,8 раза, нулевая - в 2,3-4,5 раза [15, 17, 28].

Ученые отмечают, что при замене традиционных систем земледелия на органическую систему имеется определенный переходный период, который связан с восстановлением всех естественных процессов в почве. Многолетние исследования зарубежных ученых показывают, что в перспективе органические методы выращивания могут обеспечивать уровень урожайности полевых культур на уровне 90 – 100% традиционных, особенно в неблагоприятные годы, когда средства интенсификации менее эффективны [59]. По данным Ротамстедской экспериментальной станции урожайность по традиционной и органической системам земледелия выравнивается только через 150 лет [42].

Для предупреждения отрицательных факторов сопровождающих органическое земледелие необходимо строить его на основе биологической интенсификации производства, а не скатываться к экстенсивным технологиям возделывания, особенно в условиях дефицита средств производства.

В предприятии должна быть разработана система плодосменных севооборотов, включающих набор почвоулучшающих культур (бобовые, сидераты, промежуточные культуры) [39, 47], культур привлекательных для естественных энтомофагов (рапс, клевер) [53], агрофитоценозов устойчивых к вредителям и болезням (смешанные посевы, сидераты) [10, 50].

Во избежание деградации дерново-подзолистых почв, улучшения их гумусового и микробиологического состояния большое значение при органическом земледелии имеет систематическое внесение компостированных органических удобрений и извести в севообороте [24, 32, 52].

Для снижения распространения сорной растительности помимо плодосменного севооборота необходимо применять систему улучшенной безотвальной, мелкой (поверхностной) основной и предпосевной обработки почвы, включающей приемы провоцирующие рост сорняков с последующим их уничтожением [36], оптимизировать нормы высева, агротехнические сроки и качество проведения всех мероприятий.

Для снижения распространения вредителей и болезней необходимо использовать наиболее устойчивые сорта и применять интенсивную биологическую защиту с учетом экономического порога вредоносности вредных объектов [6, 19].

В условиях, когда урожайность полевых культур при органическом земледелии снижается, а спрос на чистую продукцию не столь высок, главным сдерживающим фактором его развития в Российской Федерации становится экономика производства. Для достижения высокой эффективности производства органической продукции нужна поддержка в виде субсидий со стороны государства. В странах ЕС субсидии фермерам за производство органической продукции составляют 170 – 600 евро/га [4, 55].

Это делает производство органической продукции не только рентабельным, но и более выгодным по сравнению с традиционным земледелием. В условия Австрии стоимость органической продукции выше на 26%, а дополнительный чистый доход составляет 129 евро/га [58]. В странах, где система поддержки не отлажена производители идут по пути снижения затрат, или экстенсификации органического земледелия. Это, безусловно, не позволяет решать вопросы повышения плодородия почвы, улучшения фитосанитарного состояния посевов на перспективу и приводит к снижению урожайности и качества продукции.

Таким образом, на данном этапе развития органического земледелия в Российской Федерации, оно является пока неким социально-политическим фактором. Вокруг этого направления много пропаганды, поэтому имеются и необъективные спекуляции. Нужна объективная оценка возможности реального его расширения в различных регионах страны, установление оптимального соотношения между интенсивным традиционным производством и органическим, определение регионов оптимального размещения органического производства. В связи с этим мониторинг состояния производства органической продукции в конкретном предприятии Среднего Предуралья позволит определить перспективы его развития в регионе.

2 СОСТОЯНИЕ ОРГАНИЧЕСКОГО ПРОИЗВОДСТВА ЗЕРНА В ООО «АГРОФИРМА «ОСТРОЖКА» ОХАНСКОГО РАЙОНА ПЕРМСКОГО КРАЯ

Предприятие ООО «Агрофирма «Острожка» Оханского района Пермского края с 2017 года перешло на поверхностную обработку почвы по системе И.Е. Овсинского [36], а с 2019 года переходит на органическую систему земледелия. Центральная усадьба предприятия село Острожка находится в 15 км от районного центра г. Оханска и в 121 км от краевого центра г. Перми. От ближайшей железнодорожной станции поселка Менделеево 76 км. Со всеми указанными пунктами имеется автомобильное сообщение по дорогам с твердым покрытием. ООО «Арофирма Острожка» — это перспективное, активно развивающееся предприятие, созданное на базе совхоза с более чем полувековой историей [37]. Год основания – 1960 г. Год реорганизации — 2014 г. Угодья Агрофирмы расположены в экологически чистом районе Пермского края. Территория хозяйства расположена на правобережном пространстве реки Кама, на склонах Оханской возвышенности.

На предприятии работает 97 человек специалистов и рабочих. Специализация предприятия разведение крупного рогатого скота, производство молочной продукции высшего качества, сертифицированное органическое растениеводство.

Отрасль растениеводство имеет 3660 га пашни. Из них в 2019 году на 1175 га получен органический сертификат по стандартам стран ЕС, остальные 2485 га находятся в стадии конверсионного (переходного) периода. В хозяйстве возделывают зерновые культуры на площади 1597 га (44 %) (пшеница, ячмень и овес), многолетние травы (клевер, тимофеевка, люцерна, козлятник) — 960 га (26%), лен масличный — 394 га (11%), однолетние травы и кукуруза — 185 га (5%). Выделено

164 га (4%) чистых паров. Культуры размещаются по урочищам бессистемно, севообороты не внедрены. Средняя урожайность в 2019 году составила 17ц/га. Предприятие реализует до 200 т органического кормового зерна и семян зерновых культур.

Согласно результатам государственного агрохимического обследования сельскохозяйственных угодий от 2013 года на территории хозяйства встречаются два типа почв:

-дерново-слабоподзолистые и дерново-среднеподзолистые - 60%;

-дерново-глеевые оподзоленные – 40%.

Все почвы хозяйства имеют тяжелый гранулометрический состав. По гранулометрическому составу почвы делятся на две группы:

- -тяжелосуглинистые 90%;
- -глинистые -10%.

Эффективное плодородие почв существенно различается по полям и в пределах каждого поля. Наиболее высокие агрохимические показатели имеют почвы прифермских участков.

Структура почвенного покрова по содержанию гумуса:

- -99% имеют низкое содержание гумуса, в том числе 53% почв менее 2%, 46% почв 2-3% гумуса;
 - -1% почв имеют среднее содержание гумуса более 3%.

Средняя обменная кислотность (рНсол) почв хозяйства составляет 5,4. Структура почвенного покрова по обменной кислотности:

- -сильнокислые (рHсол < 4,6) 3%;
- -среднекислые (pHсол 4,6-5,0) 12%;
- -слабокислые (pHcoл 5,1-5,5) 51%;
- -близкие к нейтральным (рHсол 5,6-6,0) 34%.

Среднее содержание подвижного фосфора в почвах составляет 121 мг/кг. Структура почвенного покрова по содержанию подвижного фосфора:

```
-очень низкое (0-25 мг/кг) – 6%;
-низкое (26-50 мг/кг) – 10%;
-среднее (51-100 мг/кг) – 32%;
-повышенное (101-150 мг/кг) – 28%;
-высокое (151-250 мг/кг) – 19%;
-очень высокое (> 250 мг/кг) – 5%.
```

Среднее содержание обменного калия в почвах составляет 141 мг/кг. Структура почвенного покрова по содержанию обменного калия:

```
-среднее (81-120 мг/кг) – 28%;
-повышенное (121-170 мг/кг) – 56%;
-высокое (171-250 мг/кг) – 13%;
-очень высокое (> 250 мг/кг) – 3%.
```

Плодородие почв хозяйства достаточно не однородно, но значительная часть пашни (до 40%) имеет сравнительно высокий бонитет. При оценке плодородия по методике, предложенной В.А. Семеновым [40] его уровень составляет 50-60 баллов, что может обеспечить 20-25 ц/га зерна без применения удобрений.

Предприятие располагается в лесолуговой природноклиматической зоне Центрального Предуралья Пермского края. Среднегодовая температура воздуха составляет 1,5 °C, сумма активных температур 1600-1800 °C. Осадков выпадает 460 мм в год, в том числе в летние месяцы 200 мм. Гидротермический коэффициент — 1,2-1,3. Осадки распределяются во времени неравномерно. Случаются июньские или июльские засухи. Продолжительность периода активной вегетации составляет 114-120 дней, безморозного периода 90-110 дней. Условия тепло и влагообеспеченности пригодны для возделывания раннеспелых и среднеспелых сортов яровых зерновых культур.

Для оценки органического производства зерна в хозяйстве была проанализирована технология возделывания яровой пшеницы и проведены мониторинг состояния посевов и оценка технологических качеств зерна. Технология возделывания яровой пшеницы в ООО «Агрофирма Острожка» соответствует рекомендациям органического земледелия по ГОСТ 33980-2016 [18]. В систему органического земледелия логично вписывается поверхностная обработка почвы предложенная И.Е. Овсинским [36]. Она предполагает сохранение почвенного профиля в ненарушенном состоянии. Обработка почвы проводится на глубину до 8 см. Этот поверхностный слой почвы с участием пожнивных и поукосных остатков выполняет мульчирующую роль, сохраняя ее от перегревания и пересыхания. В этих условиях постепенно нормализуется водновоздушный режим почвы, активизируется деятельность сапрофитных микроорганизмов и другой почвенной биоты, угнетается патогенная микрофлора. На фоне восстановления естественных ценотических связей постепенно улучшается пищевой режим почвы.

Для борьбы с засоренностью посевов технология, применяемая в хозяйстве, предусматривает проведение серии предпосевных обработок почвы и сравнительно поздний для условий региона посев. Технология возделывания культуры включала в 2019-2020 годах следующие агротехнические мероприятия (табл. 1).

Особенностями технологии возделывания культуры в 2020 году являются:

-размещение пшеницы по удовлетворительному предшественнику ячменю;

-отсутствие зяблевой обработки почвы.

Таблица 1

Операционная карта производства зерна яровой пшеницы

	перационн		. *		,
	Агротехни-		Срок проведе	ения	Агротехнические
$N_{\underline{0}}$	ческий	Агрегат	агротехни	кален-	параметры
	приём		ческий	дарный	параметры
1	Дискование	MT3-	При наступлении	11-	На глубину 6-8 см
	почвы	1221+	физической спе-	16.05	
		БДМ-	лости почвы в		
		3x4Π	слое 6-8 см		
_	T/			1.7	ш. 5 5 (
2	Культивация	MT3-	При появлении	17-	На глубину 5-6 см, по
	почвы	1221+	единичных одно-	19.05	диагонали к предше-
		ПАУК-	летних сорняков		ствующей обработке
		4,5			почвы
3	Предпосев-	МТЗ-	При появлении	26-	На глубину 5-6 см, по
	ная культи-	1221+	единичных одно-	31.05	диагонали к предше-
	вация почвы	ПАУК-	летних сорняков	31.00	ствующей обработке
	вации по пвы	4,5	летних сорников		почвы
4	Ognogowa	ПС-10А	20.12 насел на	29.05-	Псевдобактерин 2, Ж
4	Обработка	11C-10A	За 12 часов до		* '
	семян биоло-		посева	2.06	- 1 л/т + Гумат+ 7 -
	гическими				0,2 кг/т.
	препаратами				
5	Посев	MT3-	Не позднее суток	30.05-	Способ посева лен-
		1523+АУ	после предпосев-	3.06	точно-разбросной,
		П-18.07	ной культивации		глубина посева 2,7-4,5
		11 10.07	попкультымдии		см, норма высева 3-6
					млн/га
	Б) (TD)	D 2 V	2 (0 (
6	Боронование	MT3-	В течение 3 дней	2-6.06	Поперек посева, на
	посева до	80+БС-	после посева		глубину 3-4 см
1					, ,
	всходов	15			
7		VECTOR	Фаза твердой	10-	Однофазная, высота
7	всходов			10- 25.09	
7	всходов	VECTOR	Фаза твердой		Однофазная, высота среза 10 см, обороты
7	всходов	VECTOR	Фаза твердой		Однофазная, высота
	всходов Уборка	VECTOR - 410	Фаза твердой спелости зерна	25.09	Однофазная, высота среза 10 см, обороты барабана 1000-1200 об/мин.
7	всходов Уборка Предвари-	VECTOR - 410	Фаза твердой спелости зерна В течение 12 ча-	25.09	Однофазная, высота среза 10 см, обороты барабана 1000-1200 об/мин. Доведение засоренно-
	всходов Уборка Предвари- тельная	VECTOR - 410	Фаза твердой спелости зерна	25.09	Однофазная, высота среза 10 см, обороты барабана 1000-1200 об/мин.
	всходов Уборка Предвари- тельная очистка во-	VECTOR - 410	Фаза твердой спелости зерна В течение 12 ча-	25.09	Однофазная, высота среза 10 см, обороты барабана 1000-1200 об/мин. Доведение засоренно-
8	всходов Уборка Предвари- тельная очистка во- роха	VECTOR - 410 Петкус- 527	Фаза твердой спелости зерна В течение 12 часов после уборки	25.09 10- 25.09	Однофазная, высота среза 10 см, обороты барабана 1000-1200 об/мин. Доведение засоренности вороха до 8%
	всходов Уборка Предварительная очистка вороха Сушка зер-	VECTOR - 410 Петкус- 527	Фаза твердой спелости зерна В течение 12 часов после уборки Сразу после	25.09 10- 25.09	Однофазная, высота среза 10 см, обороты барабана 1000-1200 об/мин. Доведение засоренности вороха до 8% Доведение влажности
8	всходов Уборка Предварительная очистка вороха Сушка зернового во	VECTOR - 410 Петкус- 527	Фаза твердой спелости зерна В течение 12 часов после уборки Сразу после предварительной	25.09 10- 25.09	Однофазная, высота среза 10 см, обороты барабана 1000-1200 об/мин. Доведение засоренности вороха до 8% Доведение влажности до 14%, температура
8	всходов Уборка Предварительная очистка вороха Сушка зер-	VECTOR - 410 Петкус- 527	Фаза твердой спелости зерна В течение 12 часов после уборки Сразу после	25.09 10- 25.09	Однофазная, высота среза 10 см, обороты барабана 1000-1200 об/мин. Доведение засоренности вороха до 8% Доведение влажности до 14%, температура нагрева зерна 26-52
8	всходов Уборка Предварительная очистка вороха Сушка зернового вороха	VECTOR - 410 Петкус- 527 Аэроже- лоб	Фаза твердой спелости зерна В течение 12 часов после уборки Сразу после предварительной очистки вороха	25.09 10- 25.09 10- 25.09	Однофазная, высота среза 10 см, обороты барабана 1000-1200 об/мин. Доведение засоренности вороха до 8% Доведение влажности до 14%, температура нагрева зерна 26-52
8	всходов Уборка Предварительная очистка вороха Сушка зернового вороха Первичная	VECTOR - 410 Петкус- 527 Аэроже- лоб	Фаза твердой спелости зерна В течение 12 часов после уборки Сразу после предварительной очистки вороха Сразу после	25.09 10- 25.09 10- 25.09	Однофазная, высота среза 10 см, обороты барабана 1000-1200 об/мин. Доведение засоренности вороха до 8% Доведение влажности до 14%, температура нагрева зерна 26-52 ОС Доведение засоренно-
8	всходов Уборка Предварительная очистка вороха Сушка зернового вороха	VECTOR - 410 Петкус- 527 Аэроже- лоб	Фаза твердой спелости зерна В течение 12 часов после уборки Сразу после предварительной очистки вороха	25.09 10- 25.09 10- 25.09	Однофазная, высота среза 10 см, обороты барабана 1000-1200 об/мин. Доведение засоренности вороха до 8% Доведение влажности до 14%, температура нагрева зерна 26-52
8	всходов Уборка Предварительная очистка вороха Сушка зернового вороха Первичная	VECTOR - 410 Петкус- 527 Аэроже- лоб	Фаза твердой спелости зерна В течение 12 часов после уборки Сразу после предварительной очистки вороха Сразу после	25.09 10- 25.09 10- 25.09	Однофазная, высота среза 10 см, обороты барабана 1000-1200 об/мин. Доведение засоренности вороха до 8% Доведение влажности до 14%, температура нагрева зерна 26-52 ОС Доведение засоренно-
8	всходов Уборка Предварительная очистка вороха Сушка зернового вороха Первичная очистка	VECTOR - 410 Петкус- 527 Аэроже- лоб	Фаза твердой спелости зерна В течение 12 часов после уборки Сразу после предварительной очистки вороха Сразу после	25.09 10- 25.09 10- 25.09	Однофазная, высота среза 10 см, обороты барабана 1000-1200 об/мин. Доведение засоренности вороха до 8% Доведение влажности до 14%, температура нагрева зерна 26-52 ОС Доведение засоренно-
9	всходов Уборка Предварительная очистка вороха Сушка зернового вороха Первичная очистка зерна	VECTOR - 410 Петкус- 527 Аэроже- лоб	Фаза твердой спелости зерна В течение 12 часов после уборки Сразу после предварительной очистки вороха Сразу после сушки Без ограничения	10- 25.09 10- 25.09 10- 25.09	Однофазная, высота среза 10 см, обороты барабана 1000-1200 об/мин. Доведение засоренности вороха до 8% Доведение влажности до 14%, температура нагрева зерна 26-52 оС Доведение засоренности до 3%
9	всходов Уборка Предварительная очистка вороха Сушка зернового вороха Первичная очистка зерна Вторичная	VECTOR - 410 Петкус- 527 Аэроже- лоб Петкус- 527 Петкус-	Фаза твердой спелости зерна В течение 12 часов после уборки Сразу после предварительной очистки вороха Сразу после сушки	25.09 10- 25.09 10- 25.09 ок- тябрь-	Однофазная, высота среза 10 см, обороты барабана 1000-1200 об/мин. Доведение засоренности вороха до 8% Доведение влажности до 14%, температура нагрева зерна 26-52 °C Доведение засоренности до 3% Получение кондици-
8 9 10	всходов Уборка Предварительная очистка вороха Сушка зернового вороха Первичная очистка зерна Вторичная очистка зерна	VECTOR - 410 Петкус- 527 Аэроже- лоб Петкус- 527 Петкус- 547	Фаза твердой спелости зерна В течение 12 часов после уборки Сразу после предварительной очистки вороха Сразу после сушки Без ограничения времени	25.09 10- 25.09 10- 25.09 ок- тябрь- ноябрь	Однофазная, высота среза 10 см, обороты барабана 1000-1200 об/мин. Доведение засоренности вороха до 8% Доведение влажности до 14%, температура нагрева зерна 26-52 оС Доведение засоренности до 3% Получение кондиционных семян по чистоте
9	всходов Уборка Предварительная очистка вороха Сушка зернового вороха Первичная очистка зерна Вторичная очистка зерна Калибровка	VECTOR - 410 Петкус- 527 Аэроже- лоб Петкус- 527 Петкус-	Фаза твердой спелости зерна В течение 12 часов после уборки Сразу после предварительной очистки вороха Сразу после сушки Без ограничения времени Без ограничения	25.09 10- 25.09 10- 25.09 ок- тябрь- ноябрь ок-	Однофазная, высота среза 10 см, обороты барабана 1000-1200 об/мин. Доведение засоренности вороха до 8% Доведение влажности до 14%, температура нагрева зерна 26-52 оС Доведение засоренности до 3% Получение кондиционных семян по чистоте Увеличение массы
8 9 10	всходов Уборка Предварительная очистка вороха Сушка зернового вороха Первичная очистка зерна Вторичная очистка зерна	VECTOR - 410 Петкус- 527 Аэроже- лоб Петкус- 527 Петкус- 547	Фаза твердой спелости зерна В течение 12 часов после уборки Сразу после предварительной очистки вороха Сразу после сушки Без ограничения времени	25.09 10- 25.09 10- 25.09 ок- тябрь- ноябрь	Однофазная, высота среза 10 см, обороты барабана 1000-1200 об/мин. Доведение засоренности вороха до 8% Доведение влажности до 14%, температура нагрева зерна 26-52 оС Доведение засоренности до 3% Получение кондиционных семян по чистоте

Наблюдения за состоянием посевов яровой пшеницы проводили на четырех урочищах. Особенности агротехники по урочищам приведены в таблице 2. На урочищах «Борончиха малая» и «Борончиха большая» 3 июня посеян среднеранний сорт пшеницы Екатерина с высокими сортовыми и посевными качествами. Глубина посева составила 4,5-4,7 см. Норма высева на урочище «Борончиха малая» по меркам региона была низкой 2,95 млн. всхожих семян на га, на урочище «Борончиха большая» в пределах рекомендуемой. Сорт Экада 70 имел более низкие посевные и сортовые качества. Семена посеяны на глубину близкую к оптимальной (3 см) - 2,7-2,9 см. Норма высева была умеренно низкой 4-4,5 млн./га. На урочище «За Селищами» посев был проведен на 3-4 дня раньше.

 Таблица 2

 Особенности агротехники яровой пшеницы на урочищах

Урочище	Сорт	Качество семян	Срок посева	Норма высева, млн./га	Глубина посева, см
Борончиха	Екате-	Элита,	3 июня	2,95	4,5±1,5
малая	рина	ПГ*= 90%			
Борончиха			3 июня	6,08	4,7±1,6
большая					
За Сели-	Экада	1 репродук-	30 мая	3,98	2,9±1,1
щами	70	ция,			
За Акушей		ПГ=81%	2 июня	4,52	2,7±1,0

 $^{*\}overline{\Pi\Gamma}$ – посевная годность семян

По данным агрохимического обследования 2013 года почвы наблюдаемых урочищ имеют низкое содержание гумуса - 2,3-3,1%. Дерново-среднеподзолистые почвы на урочищах «Борончиха малая» и «За Акушей» имеют слабокислую реакцию почвенного раствора (р $H_{\text{сол}} = 5,4$). Их гидролитическая кислотность была более высокой ($H_{\Gamma} = 3,5-4$ мг-экв./100 г почвы) и, как следствие, степень насыщенности основаниями более низкой (V = 84-87%), чем дерново-слабоподзолистая почва на урочище «Борончиха большая» и дерново-глеевая

оподзоленная почва на урочище «За Селищами». Эти почвы имеют реакцию почвенного раствора близкую к нейтральной (рН_{сол}=5,7) и повышенное содержание обменного калия. Почвы всех урочищ имеют повышенное содержание подвижного фосфора. Оценка бонитета данных почв показывает, что уровень их плодородия можно оценить в 58 баллов. Цена балла для яровой пшеницы в Среднем Предуралье по данным исследований составляет в среднем 42 кг [40]. В таком случае только на фоне естественного плодородия действительно возможная урожайность яровой пшеницы на этих урочищах может достигать 24,4 ц/га.

Метеорологические условия в 2020 году отличались от средних многолетних значений. По данным метеостанции города Оханска [7] май был теплее средних многолетних значений на 2 ^оС. Первые две декады были сухие, но обильные осадки (три нормы) в третьей декаде месяца создали благоприятные условия для прорастания семян и быстрого появления всходов. В июне установилась сухая прохладная погода. Среднесуточная температура воздуха была на 2,9 °C ниже нормы, осадков выпало менее 50% нормы. В целом складывались благоприятные условия для кущения растений. Июль был экстремально жарким – на 4 ^оC теплее обычного. Осадки выпали только в конце второй декады месяца. Это негативно отразилось на формировании числа колосков и зерен в колосе пшеницы. Теплый и сухой август и первая декада сентября способствовали хорошему наливу и созреванию зерна. Осадки второй декады сентября задержали уборку, но в третьей декаде условия благоприятствовали ее завершению.

На наблюдаемых полях в 2020 году была проведена оценка агрохимических свойств почвы. Установлено, что по сравнению с 2013 годом, существенных изменений показателей не выявлено. Отмечается низкое содержание нитратного азота в почве в начале вегетации 12-15 мг/кг. Это свойственно

почвам дерново-подзолистого типа, но без применения азотных удобрений может привести к недостаточной обеспеченности растений этим элементом питания.

Регулярная поверхностная обработка дерново-подзолистых и дерново-глеевых тяжелосуглинистых почв на глубину до 8 см приводит к их разуплотнению. Данные показывают, что величина плотности сложения почвы в фазе тестообразного состояния пшеницы (19 августа) составила 0,91 — 1,12 г/см³. Как правило, к концу вегетации при традиционной системе обработки почвы плотность ее сложения достигает 1,35-1,40 г/см³[13].

Наблюдение за развитием растений выявило некоторые особенности по сравнению с традиционной технологией. Всходы пшеницы появились 6-10 июня. Период посев всходы составил всего 7 дней, что на 7 – 10 дней короче, чем при посеве в ранние весенние сроки по традиционной технологии в регионе [57]. Начало кущения отмечено через 14-15 дней после всходов, что соответствует средней продолжительности этого периода развития культуры при ранних сроках посева и создает хорошие условия для формирования вторичной корневой системы. Тем не менее, сроки наступления фазы наступают позднее на 10-15 дней ее средних многолетних значений в регионе. Фаза выхода растений в трубку наступила через 11-12 дней после кущения, что быстрее на 2-3 дня, чем обычно, а колошение через 9 дней после выхода в трубку, или на 4-5 дней быстрее, чем по многолетним данным. Сокращение периода максимального потребления факторов жизни и критического периода в жизни растений создало предпосылки для уменьшения высоты стеблестоя, продуктивной кустистости и числа зерен в колосе [29]. Колошение наступило 12-15 июля, что дает гарантию созревания среднеспелых сортов пшеницы в регионе. Период колошение – начало восковой спелости зерна продолжался у сорта Екатерина 43 дня у сорта Экада 70 — 44-46 дней, что продолжительнее обычного на 4-7 дней и создавал условия для формирования крупного зерна. Твердая спелость зерна отмечена 7-9 сентября. Уборку проводили 10-12 сентября на урочище «За Селищами». На других участках в связи с неблагоприятными погодными условиями 22-25 сентября, что, как правило, приводит к истеканию зерна и снижению массы 1000 зерен [57]. Общая продолжительность периода посев — твердая спелость у среднераннего сорта Екатерина составила 96 дней, у среднеспелого сорта Экада 70 — 101-102 дня.

Различия в экологических и агротехнических условиях по полям оказали влияние на формирование продуктивности растений и посевов. Повышенная температура в период посев – всходы при поздних сроках посева в сочетании с достаточным увлажнением посевного ложа способствовала быстрому появлению всходов. Это обеспечивает высокую полевую всхожесть семян 70-84%, что на 5-19% больше, чем в среднем по традиционной технологии (табл. 3).

Таблица 3 Показатели густоты посева и продуктивности растения яровой пшеницы

Уро- чище	Всходы , шт./м ²	Поле- вая всхо- жесть, %	Колос- ков в ко- лосе, шт.	Продуктивных стеблей, шт./ м ²	Зерен в колосе, шт.	Масса 1000 зерен, г	Биологи- ческая урожай- ность, г/ м ²
1	2	3	4	5	6	7	8
Борон- чиха ма- лая	210±35	71±3	13,3± 1,4	194±29	23,6±2,5	36,4	166,7
Борон- чиха большая	425±48	70±2	7,6± 0,9	356±22	12,9±1,1	34,2	157,1
За Сели- шами	333±30	84±4	11,7± 1,2	238±24	21,5±2,0	37,5	191,9
За Аку- шей	350±42	77±3	10,3± 1,1	283±26	16,8±2,3	37,1	176,4

Продолжение таблицы 3

1	2	3	4	5	6	7	8
Среднее	455	65	14-15	400-450	20-25	35-40	-
по реги-							
ону для							
форми-							
рования							
урожай-							
ности 3							
т/га							

Оптимальная глубина посева на урочищах «За Селищами» и «За Акушей» обеспечила повышение полевой всхожести семян на 6-14%, по сравнению с ее величиной на других полях. Наиболее высокая полевая всхожесть на урочище «За Селищами» объясняется благоприятными условиями увлажнения в период посев — всходы при более раннем сроке посева.

Во всех посевах сформировались мелкие колосья. Число колосков в колосе в фазе колошения изменялось от 7,6 до 13,3 шт./ M^2 , что на 0,7-7,4 шт./ M^2 меньше, чем необходимо для достижения урожайности 3 т/га в регионе. Высокую потенциальную продуктивность имели соцветия на урочище «Борончиха малая». Число колосков в колосе в фазе колошения составляло в среднем 13,3 шт. Это можно объяснить меньшей нормой высева семян на этом урочище (см. табл. 2). При норме высева 6,1 млн./га при засушливой погоде в период кущение - колошение в посевах пшеницы на урочище «Борончиха большая» сформировался очень мелкий колос с числом колосков 7,6 шт. Пшеница Экада 70 на других урочищах имела показатели близкие к урочищу «Болрончиха малая». Пропорционально числу колосков в колосе формируется и число зерен. Существенно большее число зерен в колосе сформировалось на урочищах «Борончиха малая» и «За Селищами» - 21,5-23,6 шт. На урочище «За Акушей» - 16,8 шт. Наименьшее число зерен в колосе насчитывается у пшеницы Екатерина на урочище «Борончиха большая». Густота посевов перед уборкой была невысокой 194 — 356 шт./м² продуктивных стеблей, что обусловлено низкой сохранностью и продуктивной кустистостью растений в условиях недостаточного увлажнения в период максимального потребления влаги. Только в посевах на урочище «Борончиха малая» при низкой норме высева отмечена меньшее снижение густоты стеблестоя по сравнению с густотой посева в фазе всходов. В этом посеве в большем количестве формировались растения с двумя и тремя продуктивными стеблями. В 2020 году сложились благоприятные условия для формирования сравнительно крупного зерна. Масса 1000 зерен у сорта Екатерина составила 34,2-34,4 г, у сорта Экада 70 — 37,1-37,5 г.

Тем не менее, биологическая урожайность зерна сформировалась невысокой 157-192 г/ м². Таким образом, потенциал естественного плодородия почв (24,4 ц/га) полностью не реализован. Эффективность реализации плодородия почв на урочищах составила 64-79%. Фактическая урожайность зерна яровой пшеницы на этих урочищах была еще ниже и составила 13 -14 ц/га. Это объясняется большими механическими и биологическими потерями урожая при затяжной уборке в неблагоприятных условиях, которые составили 3-5 ц/га 19-26%.

При отсутствии минерального питания, при недостаточном накоплении в почвах нитратного азота, особенно в условиях размещения пшеницы по ячменю, растения испытывали недостаток в потреблении макроэлементов. Анализ показал, что в фазе кущения содержание общего азота в листьях пшеницы было крайне низким – 1,40-1,93%, что в 3 раза ниже оптимального значения (табл. 4). К фазе колошения содержание азота в листьях на большинстве полей даже имеет тенденцию к некоторому увеличению до 1,77- 2,45%, но дефицит его попрежнему существенный – 1-2%.

Таблица 4 Содержание общего азота (N), фосфора (P) и калия (K) в листьях пшеницы, %

Vnovyvy	Фаз	ва кущени	Я	Фаза колошения		
Урочище	N	P	K	N	P	K
Борончиха малая		1,59	5,27	2,45	1,58	5,17
Борончиха большая		1,52	5,25	2,15	1,77	5,45
За Селишами		1,32	4,79	1,91	1,46	4,56
За Акушей		1,44	4,97	1,77	1,67	4,64
Оптимальное содержа-		1,0-1,2	3-3,5	3,5-4,0	0,5-0,8	2-2,5
ние элементов питания						

Содержание фосфора и калия в листьях в течение вегетации было выше оптимальных значений, что свидетельствует о хорошей обеспеченности растений этими элементами питания даже без применения удобрений. Это можно объяснить хорошей обеспеченностью почв данными элементами питания.

Данные наблюдений за летом злаковых мух показывают, что численность шведской мухи в фазе начала кущения пшеницы на всех наблюдаемых полях была ниже уровня экономического порога вредоносности (ЭПВ), который составляет 30 шт. на 100 взмахов сачка и изменялась от 27 до 29 шт. (табл. 5). Как следствие число пораженных растений в посеве не превышает 5%, что соответствует средней величине гибели растений в посеве в течение вегетации, поэтому не может существенно отразиться на величине урожайности культуры. Различий по данным показателям по урочищам не выявлено.

Таблица 5 Численность шведской мухи и доля пораженных растений в посеве скрытостебельными вредителями

Урочище	Мух на 100 взмахов сачка, шт.	Поражено растений в посеве, %
Борончиха малая	27±5	3±1
Борончиха большая	28±2	2±1
За Селищами	27±3	5±2
За Акушей	29±2	2±1
ЭПВ	30	-

Таким образом, срок посева с 30 мая по 3 июня в условиях 2020 года не привел к сильному поражению растений скрытостебельными вредителями.

Распространение корневых гнилей в посевах увеличивается с 12 – 15% в фазе кущения до 39 – 63% в фазе тестообразного состояния (табл. 6). Можно констатировать, что обработка семян смесью биологического препарата Псевдобактерин 2, Ж и гуминового препарата Гумат+7 обеспечивает надежную защиту растений от корневых гнилей до фазы колошения на уровне нижней границы ЭПВ (10%). К фазе тестообразного состояния отмечается существенное увеличение развития болезни на урочище «За Селищами» до 24%.

Таблица 6 Распространение и развитие корневых гнилей, %

	Two pool partition in passing represent this interest, 70								
	Фаза развития пшеницы								
Vnovivio	TAX HITTOR		колон		Тестообразное				
Урочище	кущен	ис	колош	ение	состо	яние			
	распрост.	развит.	распрост.	развит.	распрост.	развит.			
Борончиха	15±4	8±3	17±4	10±3	47±10	12±4			
малая									
Борончиха	13±3	8±2	25±5	10±3	30±8	10±5			
большая									
За Сели-	14±3	9±3	30±6	12±4	63±10	24±5			
щами									
За Акушей	12±3	9±2	25±6	11±3	48±12	11±6			
ЭПВ	-	10	-	10	-	10			

Аналогичное заключение можно сделать и по развитию бурой ржавчины. До фазы колошения оно составляет 2-7%, что ниже ЭПВ (10%) (табл. 7). К фазе тестообразного состояния на большинстве урочищ развитие ржавчины достигает 17% и более. Распространения головни в посевах не выявлено *Таблица* 7

Развитие бурой ржавчины, %

T disbrine of bon branching, 70						
Vnouvero	Фаза развития пшеницы					
Урочище	колошение	тестообразное состояние				
Борончиха малая	4±2	17±4				
Борончиха большая	7±3	9±3				
За Селищами	2±1	17±6				
За Акушей	4±2	38±12				
ЭПВ	10	10				

В посевах яровой пшеницы встречается до двух десятков видов сорных растений. Из многолетних сорняков чаще других в посевах встречаются Бодяк полевой (Cirsium arvense L.), Вьюнок полевой (Convolvulus arvense L.), Пырей ползучий (Agropiron repens L.). Из малолетних видов - преимущественно Ежовник обыкновенный (просо куриное) (Echinochloa crusgalli L.), в меньшей степени Марь белая (Chenopodium album L.), Ширица запрокинутая (Amaranthus retrofaxus L.), Дымянка лекарственная (Fumaria oficinalis L.), Пикульник обыкновенный (Galeopsis tetrahit L.) и др. Общая засоренность на урочищах «Борончиха большая» и «За Селищами» составляет 38 - 44 шт./м² (табл. 8). На других выше — 61 — 82 шт./м².

Таблица 8 Засоренность посевов

	Co	рняки, шт	$1/M^2$	
Vnovivio	В Т.Ч.		Г.Ч.	Виды сорняков,
Урочище	всего	мало-	много-	по которым превышен ЭПВ
		летние	летние	
Борон-	61±26	30±16	31±12	Бодяк полевой, вьюнок полевой,
чиха ма-				ежовник обыкновенный
лая				Сжовник ообиновенный
Борон-	38±14	6±2	32±10	Бодяк полевой, вьюнок полевой, пы-
чиха				рей ползучий, ежовник обыкновен-
большая				ный
За Сели-	44±33	22±20	20±12	Бодяк полевой, вьюнок полевой,
щами				ежовник обыкновенный
3a	82±22	24±15	58±27	Бодяк полевой, вьюнок полевой, пы-
				рей ползучий, ежовник обыкновен-
Акушей				ный
ЭПВ	-	10	4	-

На урочище «Борончиха большая» отмечается средняя засоренность малолетними сорняками 6 шт./м², на остальных высокая 22-30 шт./м², что можно объяснить большей нормой высева (см. табл. 2). Засоренность многолетними сорняками очень высокая на всех полях и составляет 20 - 58 шт./м² и не зависит от нормы высева пшеницы. Посевы засорены очень не равномерно, что можно связать с качеством обработки почвы

и посева, неравномерным размещением культурных растений. Более равномерно сорняки размещаются на урочище «Борончиха большая», о чем свидетельствует самый низкий доверительный интервал.

Таким образом, возделывание яровой пшеницы по зерновой культуре, отсутствие зяблевой обработки почвы, поверхностная предпосевная обработка почвы по типу поздней яровой культуры в условиях органического земледелия обеспечивает достаточную защиту от однолетних двудольных сорняков, но приводит к сильному засорению малолетними злаковыми сорняками и очень сильному засорению многолетними сорняками существенно превышающему ЭПВ.

 Таблица 9

 Технологические качества зерна яровой пшеницы

		очище		
Показатель	за Сели- щами	за Акушей	Борончиха	пшеница уро- жая 2019 г.
Сорт	Экада70	Экада70	Екатерина	Экада70
Массовая доля белка, %	14,0	12,0	16,8	12,8
Массовая доля сырой клейковины, %	18,0±0,8	17,0±0,8	20,0±0,8	1,0
Качество клейковины, ед. ИДК	73±3	64±3	72±3	-
Число падения, сек	160±11	129±9	219±16	297±21
Натура, г/л	813±4	815±4	807±4	669±4
Стекловидность, %	49	55	60	29

Анализ технологических качеств зерна пшеницы показал, что ценная пшеница Екатерина формирует зерно с лучшими технологическими качествами, чем сорт Экада 70 (табл. 9). Массовая доля белка в зерне сорта Екатерина составила 16, 8%, на 2,8-4,8% больше, чем в зерне сорта Экада 70. По содержанию белка зерно сорта Екатерина по ГОСТ 9353-2016 соответствует 1 классу, а зерно сорта Экада 70 - 2 или 3 классу. Качество зерна сорта Екатерина по содержанию клейковины

соответствует 4 классу, сорта Экада 70 – 4 и 5 классу, но качество клейковины было высоким. Клейковина соответствовала 1 группе качества. По числу падения и стекловидности зерно пшеницы Екатерина соответствовало 1 классу, а у сорта Экада 70 – 2-4 классам. Качество зерна пшеницы Экада 70 не зависит от урочища.

Таким образом, можно утверждать, что недостаток азотного питания растений в течение вегетации не сказался на белковистости зерна ценного сорта Екатерина, но способствовал снижению содержания белка в зерне сорта Экада 70, а также привел к формированию зерна пшеницы с низким содержанием сырой клейковины. По комплексу показателей зерно пшеницы Екатерина соответствует 4 классу, сорта Экада 70 — 4 и 5 классам. Показателем, ограничивающим классность продовольственного зерна пшеницы, является массовая доля сырой клейковины.

3 ОСНОВНЫЕ НАПРАВЛЕНИЯ СОВЕРШЕНСТВОВАНИЯ ТЕХНОЛОГИЙ ОРГАНИЧЕСКОГО ПРОИЗВОДСТВА ЗЕРНА В ООО «АГРОФИРМА «ОСТРОЖКА» ОХАНСКОГО РАЙОНА ПЕРМСКОГО КРАЯ

3.1 Основные недостатки органической системы земледелия при производстве зерна

На основе анализа технологии возделывания яровой пшеницы, оценки агрохимических и агрофизических показателей почвы, состояния посевов и качества продукции можно выделить следующие недостатки органической системы земледелия при производстве зерна в ООО «Агрофирма «Острожка»:

- 1. Невыравненное плодородие полей по всем агрохимическим показателям. Это приводит к увеличению пестроты в росте и развитии растений в посевах.
- 2. Не рациональная структура посевных площадей. Не достаточная доля озимых зерновых культур. Озимые культуры выращиваются периодически. В 2020 году они отсутствовали в посевах, под урожай 2021 года посеяно 164 га или 4% площади пашни. Это не позволяет сформировать полноценное паровое звено и использовать промежуточные культуры. Доля бобовых трав в структуре посевных площадей составляет 25%, половина из них это выводные поля козлятника и люцерны, которые не участвуют активно в окультуривании пашни.
- 3. Отсутствие севооборотов и бессистемное чередование культур по полям (урочищам). Значительна доля зерновых и технические культуры размещается по зерновым предшественникам, что ухудшает режим минерального питания растений и фитосанитарное состояние посевов.
- 4. Не эффективное использование органических удобрений (навоза). Его перепревание в небольших по объему кучах

на отведенных для этого полях приводит к потере большей части азота и увеличению запасов семян сорных растений в почве.

- 5. Отсутствие осенней обработки почвы. Это приводит повышению вероятности сохранения вредителей и инфекции на полях до следующего года, концентрации семян и корневищ сорняков в верхних слоях почвы. Это задерживает наступление физической спелости почвы весной на 7-10 дней, снижает эффективность предпосевной обработки почвы и приводит к запаздыванию с посевом.
- 6. Использование сортов с продолжительным вегетационным периодом и склонных к поражению грибными заболеваниями. Это приводит к риску развития эпифитотий, невызревания зерна и проведению уборочных работ при неблагоприятной погоде в холодные влажные годы.
- 7. Нарушение оптимальных агротехнических сроков проведения агроприемов. Запаздывание с предпосевной обработкой почвы снижает эффективность борьбы с сорняками и использование запасов влаги. Проведение посева ранних яровых культур в июне снижает эффективность использования всех экологических факторов и агротехнических мероприятий, связанных с затратами и реализации потенциала продуктивности культур и сортов. Уборка в течение 10-15 дней после наступления оптимальных сроков приводит к большим механическим и биологическим потерям урожая 0,3-0,5 т /га (19-26%).
- 8. Невысокое качество полевых работ. Это огрехи при предпосевной обработке почвы и посеве, низкая выравненность глубины обработки почвы и посева, не оптимальная норма высева. Это снижает дружность появления всходов, полевую всхожесть, способствует засорению посева, формированию позднего подгона и подседа.

Выявлены следующие негативные явления в состоянии агрофитоценозов зерновых культур:

- 1. Дефицит азотного питания растений на уровне 60-70% в фазе кущения и 30-50% в фазе колошения.
- 2. Сокращение критического периода развития яровой пшеницы «выход в трубку колошение» до 9 дней (норма 14 дней).
- 3. Низкая густота продуктивного стеблестоя перед уборкой $194-356 \text{ шт./m}^2$ (норма $400-450 \text{ шт./m}^2$).
- 4. Низкая потенциальна продуктивность колоса при числе колосков 7,6-13,3 шт. (норма 14-15 шт.).
- 5. Низкая выравненность посева, формирование позднего подгона и подседа.
- 6.Высокая засоренность посевов многолетними сорняками и малолетними злаковыми сорняками $44-82 \text{ шт./m}^2$.
- 7. Низкая эффективность использования естественного плодородия почвы 64-79%, низкая биологическая 15,7-19,2 ц/га и амбарная урожайность 13-14 ц/га.
- 8. Низкое содержание массовой доли сырой клейковины в зерне.

3.2 Рекомендации по совершенствованию технологии возделывания яровой пшеницы и других зерновых культур

1. Разработка и освоение полевых и кормового севооборотов с оптимальным насыщением бобовыми, озимыми и сидеральными культурами.

На первом этапе все урочища следует разбить на две группы по агрохимическим показателям гумусового горизонта почв.

Первая группа — это урочища или их части, имеющие следующие агрохимические показатели: гумус более 2,5%, р $H_{\text{сол}}$ — от 5,5 до 6, P_2O_5 более 120 мг/кг почвы. Это наиболее плодородные окультуренные участки пашни. Полей с данным уровнем плодородия в хозяйстве 40% или около 1400 га.

На этих полях необходимо отвести постоянный участок 50 га для выращивания кукурузы на корм. Это должно быть урочище с южным склоном.

Под выводные поля люцерны (100 га) и козлятника (150 га) необходимо отводить участки с наименее кислой почвой (р $H_{\text{сол}}$ не менее 6,0).

До 300 га прифермских полей следует отвести под кормовой севооборот. В его структуру входят однолетние и многолетние травы и часть более требовательных зерновых культур. Предлагается следующая примерная схема кормового севооборота:

- 1.Вико (горохо)-овсяная смесь на зеленый корм.
- 2.Озимая рожь(тритикале) в смеси с озимой викой на зеленый корм + однолетние травы (рапс, вика, горох, овес) поукосно.
 - 3. Яровая пшеница + клевер луговой одноукосный.
- 4. Клевер луговой 1 года пользования на зеленую массу и семена.
- 5. Клевер луговой 2 года пользования на зеленую массу, отава на сидерат.
 - 6. Ячмень в смеси с горохом на кормовое зерно.

Площадь поля около 50 га.

Насыщение органикой в севообороте происходит за счет сидерации отавы клевера и соломы зерновых культур.

Оставшиеся 800 га первой группы полей отводятся под наиболее требовательные культуры полевого севооборота: озимая пшеница (озимая тритикале), лен, горох, ячмень, яровая пшеница. Предлагается следующая схема севооборота:

- 1.Клевер луговой (1 укос на зеленую массу, 2 укос на сидерат).
 - 2.Озимая пшеница (озимая тритикале) на зерно.
 - 3.Лен масличный (рапс) на семена.
 - 4. Яровая пшеница + клевер луговой двуукосный.

- 5.Клевер луговой (1 укос на зеленую массу и семена, 2 укос, отава на сидерат).
 - 6. Ячмень на зерно.
 - 7. Горох на зерно.
- 8.Ячмень (яровая пшеница) + клевер луговой двуукосный

Площадь поля 100 га.

Насыщение органикой в севообороте происходит за счет сидерации клевера в двух полях и соломы зерновых культур в пяти полях.

Вторая группа урочищ занимаю большую часть пашни 2250 га и имеет менее высокий уровень плодородия почвы: гумус 1,5-2,5%, р $H_{\text{сол}}$ 4.5-5,4, $P_2O_5-50-120$ мг/ кг. В этом севообороте следует размещать менее требовательные и кислотоустойчивые культуры: озимая рожь, овес, злаковые травы, возможно размещение яровой пшеницы. Предлагается следующая схема севооборота:

- 1.Пар чистый.
- 2.Озимая рожь на зерно.
- 3. Яровая пшеница + клевер луговой одноукосный в смеси с тимофеевкой луговой.
- 4. Клевер луговой+тимофеевка луговая 1 г.п. на зеленый корм.
- 5. Клевер луговой+тимофеевка луговая 2 г.п. на зеленый корм.
- 6.Клевер луговой+тимофеевка луговая 3 г.п. на зеленый корм.
 - 7. Яровая пшеница (гречиха) на зерно.
 - 8.Овес на зерно.

Площадь поля 280 га.

Насыщение органикой в севообороте происходит за счет внесения органического компоста в паровом поле в дозе 80 т/га и соломы зерновых культур.

Преимущества предложенных севооборотов:

- 1.Обеспечивают возможность расширения набора полевых культур (озимая пшеница, озимая тритикале, горох, рапс, гречиха).
- 2.Обеспечивает ежегодную площадь подсева и распашки клеверов и клеверо-тимофеечных смесей на уровне 500 га.
- 3.До 95% зерновых культур размещается по отличным и хорошим предшественникам, в том числе до 60% по пласту и обороту пласта бобовых трав.

Распределение урочищ по полям севооборотов следует проводить с учетом одновременности сроков поспевания почвы для обработки.

- 2.Внедрение технологии послойного компостирования навоза с торфом в буртах. Соотношение компонентов 1 часть навоза на 1-3 части торфа. Внесение компоста методом разбрасывания.
- 3.Известкование наиболее кислых почв с pH_{con} менее 5,0 в паровом поле зерно-паро-травяного севооборота. Дозу извести следует рассчитывать на сдвиг pH_{con} из расчета 950 кг на 0,1. При pH_{con} 4,5 доза извести 5,7 т/га позволяет довести обменную кислотность до уровня pH_{con} 5,1.
- 4.Подбор наиболее скороспелых сортов зерновых культур с высокими адаптивными свойствами (высокая кустистость, высокая масса 1000 зерен) и устойчивых к грибной инфекции. Анализ показывает, что к таковым из районированных сортов следует отнести следующие сорта:
- -озимая пшеница Московская 39 (сорт наиболее устойчив к снежной плесени);
- -озимая рожь Графиня (устойчив к ржавчине, мучнистой росе, отличается высокой регенерационной способностью);
- -озимая тритикале Бета (зимостойкость выше, чем у других районированных сортов на 0,5-0,7 балла, сорт устойчив к ржавчине и снежной плесени);
- -среднеспелый сорт яровой пшеницы Экада 70 (масса 1000 зерен 35-45 г, что на 3-4 г больше, чем у других сортов

пшеницы, наиболее устойчив из районированных сортов к головневым, ржавчинным заболеваниям и мучнистой росе);

-среднеранний сорт овса Гармония (масса 1000 зерен 43-53 г, что на 9 г больше, чем у наиболее распространенного сорта Денс);

-сорт ячменя Надежный (отличается повышенной устойчивостью к грибковым заболеваниям и кислотности почвы).

5. Обработка семян биологическими препаратами содержащими комплекс эффективных микроорганизмов и в первую очередь, азотфиксирующие бактерии. Применение диазотрофов во время выращивания злаковых культур позволяет получить прибавку урожая на уровне внесения 30 кг/га минерального азота. Для применения можно порекомендовать следующие препараты:

-Ризобактерин. Ж. В основу препарата входят азотфиксирующие микроорганизмы (*Klebsiellaplanticola 5*), отличающиеся высокой колонизирующей способностью, ростостимуляцией, антимикробным действием. Предназначен для предпосевной обработки семян зерновых культур в дозе 1 л/т.

-Ризоэнтерин, П — создан на основе штамма, относящегося к роду *Enterobacter (E. aerogenes*). Расход препарата 1,5 кг/т семян. Применяется на ржи, пшенице, ячмене.

-Ризоагрин, Π — создан на основе штамма, относящегося к роду *Agrobacterium (A. radiobacter*). Расход препарата 3 кг/т семян. Применяется на пшенице.

-Азофит, Ж. В препарате используются бактерии-азотофиксаторы из рода Azotobacter vinelandii. Содержит в составе Гумат К. Расход препарата 1л/т семян. Применяется на зерновых и технических культурах.

Имеются и другие препараты.

При обработке семян эти препараты следует сочетать с биофунгицидами:

Псевдобактерин 2, Ж. Содержит бактерии Pseudomonas aureofaciens, штамм BS 1393. Рекомендуется на зерновых культурах в дозе 1 л/т семян.

Фитоспорин АС Концентрат. Содержит три основные группы микроорганизмов – антагонистов фитопатогенов: бактерии рода Bacillus Subtilis (сенная палочка), грибы рода Trichoderma и лизаты ризосферных бактерий. Все штаммы относятся к почвенным микроорганизмам, сосуществующим друг с другом. Доза расхода 100 мл/т.

Имеются и другие препараты.

- 6. Использование для посева семенного материала высших категорий качества не ниже 3 репродукции, откалиброванных по массе 1000 семян на уровне высших показателей, свойственных используемым сортам.
- 7. Переход на систему улучшенной зяблевой обработки почвы, включающей двукратное дискование предшествующих трав с интервалом 15 дней, или дискование и последующую культивацию по стерневым предшественникам.
- 8. Переход к более ранним (майским) срокам посева с 20 по 30 мая.
- 9. Организация более оперативной уборки в течение не более 5-6 дней после наступления твердой спелости зерна.
- 10. Программирование и внедрение технологии возделывания на формирование оптимальной модели посевов зерновых культур на достижение планового уровеня урожайности. Для получения амбарной урожайности яровой пшеницы не менее 2 т/га посев должен иметь следующие показатели:

```
-густота продуктивного стеблестоя -370\text{-}400 \text{ шт./m}^2; -число зерен в колосе -13\text{-}15 \text{ шт.}; -масса 1000 зерен -38\text{-}42 \text{ г.} Это обеспечивается при следующих условиях: -норма высева -5\text{-}5,5 \text{ млн} всхожих семян на 1 \text{ га}; -полевая всхожесть семян -70\text{-}75\%;
```

- -продуктивная кустистость
- -число колосков в колосе

- -1,1;
- 13-15 шт.;
- -выживаемость растений в течение вегетации 90-95%.

Исходя из выше сказанного, может быть предложена следующая операционная схема усовершенствованной технологии возделывания яровой пшеницы в ООО «Агрофирма «Острожка» (табл. 10).

Таблица 10 Операционная схема усовершенствованной технологии возделывания яровой пшеницы в ООО «Агрофирма «Острожка»

No	Агроприем	Агрегат	Оптимальный агротехниче- ский срок	Агротехниче- ские требования
1	2	3	4	5
1	Дискование почвы после уборки пред- шественника	МТ3-1221+ БДМ-3х4П МТ3-1523 +БДТ-7	Сразу после уборки пред- шественника	После много- летних трав в 1- 2 следа, после стерневых пред- шественников в 1 след, глубина обработки 6-8 см
2	Повторная зяблевая обработка почвы	МТ3-1523 +БДТ-7 МТ3-1221+ ПАУК-4,5 (6,0)	Через 10-15 дней после первой, по мере отраста- ния единичных сорняков	По многолетним травам дискование, по стерневым предшественникам культивация, глубина 6-8 см
3	Первая весенняя обработка почвы	МТ3-1221+ ПАУК-4,5 (6,0) МТ3- 1221+18БЗТС- 1 МТ3-80+БС-15	При наступлении физической спелости почвы в слое 5-6 см	Оперативно в течение 1-3 суток, на глубину 5-6 см
4	Вторая весенняя обработка почвы	МТ3-1221+ ПАУК-4,5 (3,0)	Через 7-10 дней после первой обра- ботки почвы, при появлении единичных сорняков	По диагонали к первой обра- ботке, на глу- бину 5-6 см

Продолжение таблицы 10

	T		прооолжение таолицы то		
1	2	3	4	5	
5	Третья (предпосев-	MT3-1221+	Через 7-10	Проводят при	
	ная) обработка	ПАУК-4,5 (3,0)	дней после	сильной засо-	
	почвы		второй обра-	ренности поля	
			ботки почвы,	(более 50	
			при появлении	шт./м²) по диа-	
			единичных	гонали к преды-	
			сорняков	дущей обра-	
				ботке почвы, на	
				глубину 5-6 см	
6	Предпосевная обра-	ПС-10А	За 12 часов до	В тени,	
	ботка семян ком-		посева	Фитоспорин АС	
	плексом биологиче-			Концентрат –	
	ских препаратов			$100 \text{ мл/т} + \text{A}_{30}$ -	
				фит, Ж – 1 л/т,	
				полусухим спо-	
				собом (10 л/т	
				воды)	
7	Посев		Через 7-10	Поперек по-	
		MT3-	дней после 2	следней обра-	
		1523+АУП-	обработки, или	ботки почвы, на	
		18.07	сразу после 3	глубину 3-4 см,	
			обработки, но	норма высева 5-	
			не позднее 20-	5,5 млн/га	
			30 мая		
8	Боронование посева	МТЗ-80+БС-15	В течение 2 су-	Поперек посева,	
			ток после по-	на глубину до 3	
			сева	CM	
9	Уборка	VECTOR - 410	При наступле-	Однофазно при	
			нии твердой	влажности	
			спелости	зерна не более	
			зерна, в тече-	21%, число обо-	
			ние не более 5	ротов барабана	
			суток	1000-1200, вы-	
				сота среза 10-15	
				см, потери до	
				3%, с измельче-	
				нием соломы	

Технологические операции могут быть проведены другими агрегатами, выполняющими аналогичные функции. Может быть использован другой набор биологических препаратов для обработки семян.

ЗАКЛЮЧЕНИЕ

- 1. ООО «Агрофирма «Острожка» Оханского района Пермского края – первое и единственное предприятие в регионе перешедшее в 2019 году на производство органической продукции растениеводства. Хозяйство имеет определенные условия, позволяющие ему заниматься органическим производством зерна. На 1175 га (32%) пашни получен органический сертификат по стандартам стран ЕС, остальные 2485 га находятся в стадии конверсионного (переходного) периода. С 2017 года предприятие перешло на поверхностную сберегающую обработку почвы по системе И.Е. Овсинского. Значительная часть почв (40%) имеет сравнительно высокое эффективное плодородие 50-58 баллов (гумус 2-3%, рНсол более 5, содержание подвижного фосфора более 100 мг/кг). Это позволяет при благоприятных климатических условиях и высокой культуре земледелия без удобрений получать до 20-25 ц/га зерна.
- Мониторинг агрофизических агрохимических И свойств почвы показал, что органическая система земледелия, применяемая в течение семи лет, не ухудшает агрохимические свойства дерново-подзолистой почвы, не смотря на отсутствие минерального питания сельскохозяйственных культур, однако отмечается недостаточное накопление нитратного азота. Сохраняется большая невыравненность плодородия полей по всем агрохимическим показателям, что приводит к увеличению пестроты в росте и развитии растений в посевах. Поверхностная обработка дерново-подзолистых и дерново-глеевых тяжелосуглинистых почв на глубину до 8 см приводит к их разуплотнению. Плотность сложения почвы на глубине 10 см в фазе тестообразного состояния яровой пшеницы (19 августа) составила 0.91 - 1.12 г/см³, что на 0.3 - 0.4 г/см³ниже, чем при традиционной глубокой отвальной системе обработки.
- 3. Анализ технологии возделывания яровой пшеницы выявил следующие недостатки:

-не рациональная структура посевных площадей. Доля озимых зерновых культур составляет 0-4% площади пашни. Доля многолетних бобовых трав активно использующихся в окультуривании пашни не превышает 10%;

-отсутствие севооборотов и бессистемное чередование культур по полям (урочищам);

-не эффективное использование органических удобрений (навоза);

-отсутствие осенней обработки почвы;

-использование сортов с продолжительным вегетационным периодом и склонных к поражению грибными заболеваниями;

-нарушение оптимальных агротехнических сроков проведения агроприемов и невысокое качество полевых работ.

- 4. Мониторинг состояния агрофитоценозов яровой пшеницы в условиях органической системы земледелия показал:
- даже при поздних сроках посева на посевах пшеницы не отмечается активного лета злаковых мух, превышающего показатели экономического порога вредоносности. Доля пораженных растений в посеве не превышает 5%;

-поверхностная обработка почвы по системе земледелия И.Е. Овсинского в сочетании с обработкой семян перед посевом биологическим препаратом Псевдобактерин, Ж в дозе 1 л/т и препаратом Гумат+7 в дозе 0,2 кг/га защищает посевы яровой пшеницы от развития и распространения корневых гнилей и бурой ржавчины до фазы колошения на уровне экономического порога вредоносности. Однако к фазе тестообразного состояния развитие и распространение этих заболеваний существенно увеличивается;

-при применении поверхностной весенней предпосевной обработки почвы по типу поздней яровой культуры отмечается сильное засорение малолетними злаковыми сорняками и очень сильное засорение многолетними корнеотпрысковыми и корневищными сорняками. Общая засоренность посевов

многолетними сорняками и малолетними злаковыми сорняками составила 44-82 шт./м²;

-дефицит азотного питания растений находится на уровне 60-70% в фазе кущения и 30-50% в фазе колошения;

-сокращение периода посев — всходы на 7-10 дней (до 7 дней) и повышение полевой всхожести на 5-19% по сравнению с традиционной технологией возделывания культуры. Продолжительность критического периода развития растений «выход в трубку — колошение» в условиях 2020 года сократился до 9 дней (норма 14 дней). Тем не менее, общая продолжительность вегетационного периода составила у среднераннего сорта 96 дней, у среднеспелого сорта 101-102 дня. Наступление уборочной спелости приходится на вторую половину сентября;

-низкую густоту продуктивного стеблестоя перед уборкой $194-356 \text{ шт./m}^2$ (норма $400-450 \text{ шт./m}^2$). Низкую потенциальную продуктивность колоса при числе колосков 7,6-13,3 шт. (норма 14-15 шт.);

-низкую выравненность посева, формирование позднего подгона и подседа;

-низкую эффективность использования естественного плодородия почвы 64-79%. Биологическая урожайность культуры составила 15,7-19,2 ц/га, амбарная - 13-14 ц/га.

- 5. Оценка технологических качеств зерна показала:
- по комплексу показателей зерно пшеницы соответствует 4 классу сорт Екатерина и 4-5 классам сорт Экада 70;
- формируется зерно с низким содержанием сырой клейковины 18-20%;
- по содержанию массовой доли белка в зерне сорт Екатерина превосходит сорт Экада 70 на 2,8-4,8%.
- 6. Решению выявленных проблем в органическом производстве зерна будут способствовать:

- разработка и освоение полевых и кормового севооборотов с оптимальным насыщением бобовыми, озимыми и сидеральными культурами;
- внедрение технологии послойного компостирования навоза с торфом в буртах;
- известкование наиболее кислых почв с $pH_{\text{сол}}$ менее 5,0 в паровом поле зерно-паро-травяного севооборота из расчета дозы на сдвиг $pH_{\text{сол}}$;
- подбор наиболее скороспелых сортов зерновых культур с высокими адаптивными свойствами и устойчивых к грибной инфекции;
- обработка семян биологическими препаратами содержащими комплекс эффективных микроорганизмов и в первую очередь, азотфиксирующие бактерии;
- переход на систему улучшенной зяблевой обработки почвы;
- использование для посева семенного материала высших категорий качества не ниже 3 репродукции, откалиброванных по массе 1000 семян на уровне высших показателей, свойственных используемым сортам;
- переход к более ранним (майским) срокам посева с 20 по 30 мая;
- организация и проведение более оперативной уборки в течение не более 5-6 дней после наступления твердой спелости зерна;
- программирование и внедрение технологии возделывания на формирование оптимальной модели посевов зерновых культур на плановый уровень урожайности. Для получения амбарной урожайности яровой пшеницы не менее 2 т/га посев должен иметь следующие показатели:

```
-густота продуктивного стеблестоя - 370-400 шт./м<sup>2</sup>;
```

-число зерен в колосе **-** 13-15 шт.;

-масса 1000 зерен - 38-42 г.

СПИСОК ЛИТЕРАТУРЫ

- 1. Федеральный закон «О развитии сельского хозяйства» от 29.12.2006 № 264-ФЗ [Режим доступа]www. Consultant/ru/document/cons doc LAW 64930/[дата обращения]13.09.2020.
- 2. Федеральный закон «Об органической продукции и внесении изменений в отдельные законодательные акты РФ» от 03.08.2018 № 280-ФЗ[Режим доступа] www. Consultant/ru/document/cons doc LAW 304017/[дата обращения]17.02.2020.
- 3. Алексахин Р.М. Техногенное загрязнение сельскохозяйственных угодий/ Р.М. Алексахин, М.И. Лунев//Плодородие. 2011. № 3. С. 32-35.
- 4. Алехин В.Т. Основные проблемы при переходе к органическому земледелию / В.Т. Алехин // Биологическая защита растений основа стабилизации агроэкосистем: материалы Международной научно-практич. конф. (11-13 сентября 2018 г., г. Краснодар). Вып. 10. Краснодар, 2018. С.484-487.
- 5. Алтухов А. Проблема преодоление дефицита зерна в России/А. Алтухов, Д. Вермель, Т. Лысенков//АПК: экономика и управление. 1995. № 2. С.8-14.
- 6. Анисимов А.И. Возможность защиты растений в органическом земледелии на Северо-Западе России / А.И. Анисимов, С.А. Доброхотов, Д.О. Караев // Известия Санкт-Петербургского ГАУ. 2010. № 18. С. 81-86.
- 7. Архив погоды: Пермский край, Россия [Режим доступа] http://www.pogodaiklimat.ru/weather.php?id=28321&bday=1&fday=10&amonth=5&ayear=2020&bot=2 [дата обращения] 01.10.2020.
- 8. Бараев А.И. Резервы целинного земледелия/ А.И. Бараев, В.И. Кирюшин// Земледелие. 1978. № 9. С. 2-5.
- 9. Борискин И.А. Содержание токсических веществ в зеленных культурах/ И.А. Борискин //Инновационные аспекты агрономии в повышении продуктивности растений и качества продукции в Сибири: материалы Международной научно-практ. конф. Улан-Удэ, 2015. С. 22-26.
- 10. Бобков С.И. Определение затрат мощности на измельчение сидератов на поверхности почвы для формирования мульчирующего слоя в технологии органического земледелия / С.И. Бобков // Техника и оборудование для села. 2017. № 3. С. 14-17.
- 11. Бринчук М.М. Охрана окружающей среды в сельском хозяйстве / М.М. Бринчук // Аграрное и земельное право. 2009. № 5. С. 78-99.
- 12. Бутов А.В. Экологически чистый картофель для детского и диетического питания/ А.В. Бутов, А.А. Мандрова // Техника и технология пищевых производств. 2005. № 3. С. 121-126.

- 13. Васильев И.П. Практикум по земледелию / И.П. Васильев, А.М. Туликов. Г.И. Баздырев. М.: КолосС, 2004. 424 с.
- 14. Влияние длительного применения органических и минеральных удобрений на гумусное состояние дерново-подзолистой почвы/ М.Т. Васбиева, Н.Е. Завьялова, Д.С. Фомин и др.// Проблемы агрохимии и экологии. 2019. № 2. С. 9-13.
- 15. Влияние приемов основной обработки почвы на засоренность посевов кукурузы в зернопаропропашном севообороте / В.К. Ильченко, В.А. Полосина, И.О. Ильченко и др. // Вестник Красноярского ГАУ. 2018. № 5. С. 22-29.
- 16. Горчаков Я.В. Мировое органическое земледелия XXI века/ Я.В. Горчаков, Д.Н. Дурманов. М.: ПАИМС, 2002. 402с.
- 17. Горшкова Н.А. Влияние предшественников и основной обработки почвы на засоренность посевов озимой пшеницы / Н.А. Горшкова // Новости науки в АПК. 2018. №2-2. С. 112-114.
- 18. ГОСТ 33980-2016 Продукция органического производства. Правила производства, переработки, маркировки и реализации. М.: Стандартинформ, 2016. 15 с.
- 19. Данилова Т.А. Перспективы использования энтомопатогенных нематод против проволочников на картофеле в органическом земледелии Северо-Западного региона РФ / Т.А. Данилова, Л.Г. Данилов, СМ. Синицына // Ученые записки Петрозаводского ГУ. 2018. № 8. С. 17-22.
- 20. Докучаев В.В. Нпши степи прежде и теперь /В.В. Докучаев. М-Л.:Сельхлзгиз, 1936. 117 с.
- 21. Дъяков Ю.Т. Инвазии фитопатогенных грибов/ Ю.Т. Дъяков, М.М. Левитин. М., 2018. 251 с.
- 22. Ершов Д.А. Влияние приема основной обработки почвы и предшественника в севообороте на засоренность посевов и урожайность яровой пшеницы / Д.А. Ершов, В.В. Рзаева // Вестник Мичуринского ГАУ. 2019. №1. С. 71-74.
- 23. Жученко А.А. Адаптивное растениеводство (эколого-генетические основы). Т. 1. М.: Агрорус, 2008. 816 с.
- 24. Завьялова Н.Е. Микробиологическое состояние дерновоподзолистой почвы Предуралья при длительном применении органических и минеральных удобрений /Н.Е. Завьялова, И.Г. Широких, В.Р. Ямалтдинова // Теоретическая и прикладная экология, 2020. № 1. С. 151-159.
- 25. Игнатьев Д.С. Обработка почвы на эрозионных склона/ Д.С. Игнатьев, Э.А. Гаевая //Аграрный вестник Урала. 2010.№ 12. С. 13-14.
- 26. Кондратьева Т.Д. Эколого-биогеохимическая оценка влияния микробиологических препаратов, содержащих Bacillus subtilis, на

- систему почва-растение: автореф. дис....канд. биол. наук. М., 2015. 23 с.
- 27. К проблеме ведения растениеводства на радиактивно загрязненных территориях/ А.Н. Ратников, А.С. Филипас, Т.Л. Жигарева и др.// Радиация и риск, 1997. № 9, С. 61-65.
- 28. Краснова Е.А. Влияние способов основной обработки почвы на засоренность посевов сои в Западной Сибири / Е.А. Краснова, В.В. Рзаева // Аграрный вестник Урала. 2019. № 5. С. 4-8.Лебедева А.Н. Защита окружающей среды от загрязнения: методы контроля и регулирования/ А.Н. Лебедева, О.Л. Лаврик// Экология. 1993. № 27. С. 6-350.
- 29. Макарова В.М. Структура урожайности зерновых культур и ее регулирование/ В.М. Макарова. Пермь, 1995. 145 с.
- 30. Лебедева А.Н. Защита окружающей среды от загрязнения: методы контроля и регулирования/ А.Н. Лебедева, О. Л. Лаврик// Экология. 199. № 27. С. 6-350.
- 31. Любоведский Я. Российское органическое сельское хозяйство нуждается в эффективном регулировании рынка/ Я. Любоведский // Мосты. 2013. Вып. 8. С. 15-17.
- 32. Митрофанова Е.М. Влияние известкования на плодородие дерново-подзолистой почвы и урожайность полевых культур/ Е.М. Митрофанова // Достижения науки и техники АПК. 2013. № 5. С. 40-42.
- 33. Михайлова Л.А. Эффективность доз азотно-калийных удобрений на ячмене сорта Сонет при различной обеспеченности почв фосфором / Л.А. Михайлова, Ю.А. Акманаева // Пермский аграрный вестник. 2006. Вып. 16. Ч. 1. С. 9-12.
- 34. Михайлова Л.А. Оптимизация питания ячменя, озимой ржи, картофеля и клевера и эффективность минеральных удобрений при разной окультуренности дерново-подзолистых почв Предуралья: автореф. дис....докт. с.-х. наук. Пермь, 2008. 41 с.
- 35. Национальный атлас России. Т.2. [Режим доступа]:www. Национальный атлас. РФ/cd2/323/323.html[дата обрашения]03.03.2020
- 36. Овсинский И.Е. Новая система земледелия / И.Е. Овсинский. М., 1909. 97 с.
- 37. ООО «Агрофирма Острожка» Пермский край. Знакомимся! Участники Союза органического земледелия [Режим доступа] https://soz.bio/ooo-agrofirma-ostrozhka-uchastniki-soyuza-organicheskogo-zemledeliya/[дата обращения] 21.09.2020.
- 38. Основные положения по борьбе с водной и ветровой эрозией почв/ А.И. Бараев, С.С. Соболев, А.С. Шамшин. М.: Сельхозиздат, 1962. 72 с.
- 39. Осокин И.В. Роль бобовых и злаковых культур в производстве кормового белка и программирование белковой продуктивности

- агрофитоценозов в Предуральском регионе Нечерноземной зоны России: автореф. дис...докт. с.-х. наук. Новосибирск, 1998. 29с.
- 40. Осокин И.В. Программирование урожаев и адаптивное растениеводство Предуралья: учебное пособие/ И.В. Осокин, А.С. Богатырева, Н.Н. Яркова. Пермь, 2012. 235 с.
- 41. Пегова Н.А. Повышение продуктивности дерново-подзолистой среднесуглинистой почвы за счет биологизации и противоэрозионной обработки почвы: автореф. дис....канд. с.-х. наук. Пермь, 2008. 23 с.
- 42. Погожев А. Экологичность органического сельского хозяйства/ А.Погожев//Агроснабфорум. 2015. № 1-2. С. 24-25.
- 43. Пронина О.В. Влияние сидератов на плодородие черноземных почв и продуктивность севооборота в Степном Заволжье: автореф. дис.... канд с.-х. наук. Кинель, 2005. 23 с.
- 44. Россия в цифрах 2020: краткий статистический сборник. М., 2020. 550 с. [Режим доступа]https^//rsstat.gov.ru/strge/mediabank/GOyirKPV/Rus_2020pdf[дата обращения]13/09/2020.
- 45. Санин С.С. Органическое землепользование: фитосанитарные экологические и экономические барьеры / С.С. Санин // Биологическая защита растений основа стабилизации агроэкосистем: материалы Международной научно-практич. конф. (11-13 сентября 2018 г., г. Краснодар). Вып. 10. Краснодар, 2018.С.509-513.
- 46. Сафронова Г.В. Ризосферные микробные ценозы и продуктивность рапса при возделывании культуры с использованием микробных препаратов/Г.В. Сафронова, З.М. Алещенкова., И.Н. Ананьева, Н.И. Наумович // Биологическая защита растений основа стабилизации агроэкосистем: материалы Международной научно-практич. конф. (11-13 сентября 2018 г., г. Краснодар). Вып. 10. Краснодар, 2018. С.513-515.
- 47. Соснина И.Д. Схемы полевых севооборотов, обеспечивающие повышение продуктивности пашни на 11,9-16,9% сохранение плодородия почвы и биологического разнообразия в агроландшафтах/И.Д. Соснина, А.И. Косолапова. Пермь, 2010. 11 с.
- 48. Сычев В.Г. Тенденции изменения агрохимических показателей и прогноз состояния плодородия почв/ В.Г. Сычев // Прогноз состояния и научное обеспечение плодородия почв сельскохозяйственного назначения: материалы XI Междунар. симпозиума. Ялта, 2007. С. 4-28.
- 49. Тутельян В.А. Микотоксины/ В.А. Тутельян, Л.В. Кравченко. М.: Медицина. 1985. 320 с.
- 50. Хабибуллин Ф.Х. Совместные посевы многолетних бобовых трав и зерновых культур как основа органического земледелия /

- Ф.Х. Хабибуллин, Ф.Д. Закиров // Ученые записки государственной академии ветеринарной медицины имени Н.Э.Баумана. 2011. Т. 206. С. 228-236.
- 51. Харченко А.Г. Восстановление плодородия почвы возвращение к истокам. Разложение пожнивных остатков: какой препарат выгоднее?/ А.Г. Харченко// Вестник МАНЭБ. 2015. Т. 20. № 2. С. 90-101.
- 52. Хмылев В.Д. эффективность системы применения удобрений в органическом земледелии / В.Д. Хмылев, Б.С. Труфанов, О.И. Журавлева // Вестник Мичуринского ГАУ. 2019. № 3. С. 14-18.
- 53. Черкашин В.Н. Севооборот как основа органического земледелия при выращивании экологически чистой продукции растениеводства / В.Н. Черкашин // Известия Оренбургского ГАУ. 2017. № 4. С. 28-30.
- 54. Черников В.А. Стратегия получения экологически безопасной продукции/ В.А. Черников, О.А. Соколов // Владимирский земледелец. 2014. № 2-3. С. 33-37.
- 55. Шеламова Н.А. Тенденции развития органического сельского хозяйства / Н.А. Шеламова // Экологические проблемы современного овощеводства и качество овощной продукции: материалы Междунар. научно-практ. конференции. Вып. 1. М., 2014. С. 30-40.
- 56. Эффективность агрохимических средств при возделывании озимой ржи на техногенно загрязненной почве/ Г.П. Малявко, И.Н. Белоус, В.Ф. Шаповалов// Вестник Брянской ГСХА. 2019. № 6. С. 3-8.
- 57. Яркова Н.Н. Сортовые особенности формирования урожайности и посевных качеств семян яровых зерновых культур в Предуралье: автореф. . . . дис. канд. с.-х.наук. Пермь, 2011. 18 с.
- 58. Comparative economic assessment between conventional and organic farming at the agricultural test site Wagna, Austria / K. Gernot, K. Heinz, R. Johan and oll //Новые методы и результаты исследований ландшафтов в Европе, Центральной Азии и Сибири. М., 2018. С. 320-324.
- 59. Soil fertility and Biodiversity in Organic Farming /P. Mader., A. Fieback, D. Dubois and ell. [Режим доступа] http://www.mind-fully.org/Farm/Organic-Farming-Fertility-Biodiversity 31may02.htm [дата обращения] 17.02.2020.

Научное издание

Елисеев Сергей Леонидович, **Мурыгин** Виктор Павлович, **Калабина** Татьяна Сергеевна

СОВЕРШЕНСТВОВАНИЕ ТЕХНОЛОГИИ ВОЗДЕЛЫВАНИЯ ЗЕРНОВЫХ КУЛЬТУР В УСЛОВИЯХ ОРГАНИЧЕСКОЙ СИСТЕМЫ ЗЕМЛЕДЕЛИЯ ООО «АГРОФИРМА «ОСТРОЖКА» ОХАНСКОГО РАЙОНА ПЕРМСКОГО КРАЯ

Рекомендации

Подписано в печать 25.12.20. Формат 60х84 ¹/₁₆. Усл.печ. л. 3,13. Тираж 50 экз. Заказ №116

ИПЦ «Прокрость»

Пермского государственного аграрно-технологического университета имени академика Д.Н. Прянишникова 614990, Россия, г. Пермь, ул. Петропавловская,23, тел. (342) 217-95-42